

EcoNode Hardware Development Guide V1 EMS-00002-1.01

EcoNode605

EcoNode Series Gateways

C/C++ Development Guide

Setting Up a PC Development Environment

EcoNode Hardware Development Guide V1 EMS-00002-1.01

EcoNode605

Table of Contents
EcoNode Series Gateways .. 1
C/C++ Development Guide .. 1
Setting Up a PC Development Environment ... 1

4.1 Operating System Requirements .. 3
CMake ... 4

4.2 Coding Tools ... 6
Vim ... 6
Visual Studio Code (VSCode) ... 7
Emacs .. 7
QtCreator ... 8
Summary ... 8

4.3 Engineering Management Tools ... 8
4.3.1 IDE Project Management ... 8
4.3.2.1 Makefile Structure ... 9
4.3.2.2 Variable Definitions ... 9
4.3.2.3 Targets and Dependencies ... 9
4.3.2.4 Phony Targets ... 9
4.3.2.5 Functions ... 9
4.3.2.6 Shell Commands in Makefile ... 9
4.3.2.7 Conditional Statements ... 9
4.3.2.8 Handling Multi-level Directories... 9
4.3.3 Basic Process of Using CMake ... 9
Structure of CMakeLists.txt ... 10
Version Control in CMake ... 10
Project Name with project ... 10
Building Executable and Library Targets .. 10
Example of CMake Configuration ... 10

Multi-Level Directory Support ... 11
4.3.3.3 To generate a Makefile ... 11
4.3.4 Managing Projects with autoconf ... 12
4.4 Compilation Tools ... 13
4.4.1 Compilation ... 13
4.4.2 Linking .. 13
4.4.3 Dependency Checking ... 14
Exporting Symbols... 14

4 Steps to Set Up a Development Environment

Software Development Using PC-Based Coding, Cross-Compilation, and Remote
Debugging

Software development uses PC-based coding, cross-compilation, and remote debugging.
Before starting development, the following steps are needed to prepare the development
environment:

1. Preparing the operating system
2. Choosing an IDE or editor
3. Installing cross-compilation tools
4. Porting common open source libraries

4.1 Operating System Requirements

The provided compilation and debugging toolchain runs on a 64-bit Linux operating system.
Therefore, you need to prepare a 64-bit Linux OS. You can choose one of the following
methods. It is recommended to use Ubuntu 20.04 or 22.04 for installation.

When installing on physical or virtual machines, download the installation image from the
Ubuntu official website. You can download it from the following URL:
https://cn.ubuntu.com/download.

Choose either the desktop version or the server version based on your usage needs. The
main difference is that the desktop version includes a GUI interface, while the server
version does not.

4.1.1 WSL (Windows Subsystem for Linux)

First, ensure your Windows version is Windows 10 or later. If this condition is met, you can
install WSL to provide a Linux environment. Currently, there are two versions of WSL: WSL
1 supports serial ports, but WSL 2 does not. If programming and debugging require
validation on the PC, carefully consider whether to use this method. The installation
process is as follows:

1. Enable Developer Mode:
o In "Turn Windows features on or off," enable "Windows Subsystem for

Linux" and "Virtual Machine Platform."
2. Install Linux:

o Choose Ubuntu from the Microsoft Store to install. It is recommended to
install the LTS version.

3. Initialize Ubuntu:
o After installation, access and initialize Ubuntu through the Start Menu.

4. Access Ubuntu:
o After initialization, you can access it via PowerShell, CMD, or the Start

Menu. In PowerShell or CMD, type bash to enter the system. To exit, type
exit.

5. Set Default User to Root:

For development, root access might be required frequently. Change the default user to root
with the command:

Replace XXYY with your Ubuntu version (e.g., for Ubuntu 22.04, use ubuntu2204 config --
default-user root).

6. View Other Parameters:
o You can view other parameters with:

4.1.2 Virtual Machine

When using a virtual machine for installation, the physical machine must have sufficient
hardware resources to ensure smooth operation of the virtual machine. VMware is
recommended for virtual machine installation. This guide uses VMware as an example to
explain the installation process and Ubuntu setup.

1. Install VMware:
o Download and install VMware Workstation or VMware Player from the

official VMware website.
2. Create a New Virtual Machine:

o Open VMware and choose to create a new virtual machine. Follow the
prompts to configure the virtual machine’s settings.

3. Configure Virtual Machine Settings:
o Allocate sufficient CPU, memory, and disk space to the virtual machine to

ensure optimal performance.
4. Install Ubuntu:

o Attach the Ubuntu ISO file to the virtual machine and boot from it. Follow the
on-screen instructions to install Ubuntu.

5. Complete Ubuntu Installation:
o After installation, configure Ubuntu as needed and ensure that VMware

Tools or equivalent is installed for better integration between the host and
the virtual machine.

By following these steps, you can successfully set up a virtual machine environment using
VMware and install Ubuntu for development purposes.

4.1.3 Physical Machine

For installing the operating system on a physical machine, you need to create an
installation CD or USB drive. Users can use tools like SoftDisc to create a bootable USB
drive. The installation process is as follows:

1. Open the Image File:
o Use SoftDisc or a similar tool to open the operating system image file.

2. Write the Image to the USB Drive:
o Transfer the image file to the USB drive, making it bootable.

3. Modify Boot Order:
o Adjust the boot order in the BIOS or UEFI settings of the physical machine

to boot from the USB drive.
4. Follow Installation Prompts:

o Boot from the USB drive and follow the on-screen instructions to complete
the operating system installation.

By following these steps, you can prepare a physical machine for OS installation using a
bootable USB drive.

4.1.4 Installing Basic Development Environment and Tools

During development, you might need auxiliary tools such as CMake, Autotools, Python,
Perf, and Valgrind. In some cases, running programs in a PC environment for debugging
purposes may also require appropriate tools.

CMake

CMake is a cross-platform build system generator that allows you to describe the build
process using simple statements. It generates various types of makefiles or project files and
can test the C++ features supported by the compiler, similar to Unix's automake. CMake's
configuration file is named CMakeLists.txt.

Unlike directly building the final software, CMake produces standard build files (like Unix
Makefiles or Windows Visual C++ projects/workspaces) which are then used in the usual
build process. This enables developers familiar with a particular Integrated Development
Environment (IDE) to build software in a standard way, distinguishing it from other systems
like SCons.

CMake supports both in-place builds (where binaries and source code are in the same
directory tree) and out-of-place builds (where binaries are in a different directory), making it
easy to build multiple binaries from the same source tree. It also supports building static
and dynamic libraries. Despite its name, which includes "make," CMake operates
separately from the traditional Unix "make" system and offers a higher level of abstraction.

To install CMake, use the following command:

After installation, you can verify it with:

 Installing autoconf

Autoconf is part of the GNU build system, which uses scripts and make programs to build
software on specific platforms. The typical process involves three steps: configure, make, and
make install. This approach has become a standard practice and is widely used.

To simplify portable builds, the AutoTools suite was developed to assist programmers in
constructing software. The configure, make, and make install steps are often based on
AutoTools, which is the standard build system for GNU programs.

To install Autoconf, use the following command:

After installation, you can verify it with:

 Installing build-essential

build-essential is a package in Ubuntu that includes a collection of compilers and tools for C,
C++, Objective-C, Fortran, Ada, Go, and D programming languages. It is not installed by
default in Ubuntu.

To install the build-essential package, use the following command:

After installation, you can verify it with:

rockBulk Overview

rockBulk is a suite of PC tools developed by our company, designed to streamline device
management, maintenance, and software deployment. The suite includes the following
tools:

1. deviceScanner: A local network discovery tool that periodically broadcasts a
device's network and operational status. The PC receives and parses these
broadcasts to identify devices within the local network, allowing direct access to
device configuration pages or remote login for operations.

2. smartTunnel: A remote maintenance software with business data tunneling
capabilities. It uses OpenVPN for P2P communication and direct network card
access to facilitate cross-segment communication with gateway and subordinate
devices. It's useful for remote PLC programming and debugging. In VPN ONLY
mode, users can access remote gateway web pages and use rockTerminal for
remote gateway login.

3. rockTerminal: A remote login software supporting telnet and SSH protocols, with
additional support for the Zmodem protocol for file transfers. It integrates with
deviceScanner and smartTunnel, allowing seamless remote logins. Key features
include:

o SSH and telnet remote login
o Zmodem file transfer
o Address book for frequently used server addresses
o Text copy and search engine queries
o Command history browsing with mouse scroll
o English and Chinese interfaces

4. fotaMan: A separate tool for differential package management, essential for over-
the-air (OTA) upgrades via our device management platform. It handles software
packaging, verification, release, and upgrade control.

5. Virtual Serial Port Tool: Uses virtual serial port drivers to create virtual serial port
pairs on the operating system. One end (with a lower number) is exposed to user
programs, while the other (with a higher number) is used for network
communication. Features include:

o Adding, deleting, and modifying virtual serial ports
o Virtual serial port service control (start, stop)
o TCP and UDP client/server modes
o Heartbeat packet functionality
o Registration packet functionality with various sending options

6. rockFtpD: A simple FTP server program supporting both active and passive modes,
easily configurable and capable of interacting with our device management platform
using a public account.

Software can be obtained from our official website or by contacting our sales team.

4.2 Coding Tools

Below is an overview of several coding tools, along with their features and installation
methods.

Vim

Vim is a text editor that evolved from vi. It’s well-known among programmers for its
extensive features such as code completion, compilation, and error jumping. It stands

alongside Emacs as one of the most popular text editors among Unix-like system users.
Vim’s design philosophy revolves around combining commands. By learning and flexibly
using various movement and editing commands, Vim can be more efficient than editors
without modes. It also shares many shortcuts and regular expressions that aid memory.
Vim is optimized for programmers.

Installation:

 Windows: The distribution version, gVim, can be easily obtained from Tencent
Computer Manager, 360 Software Market, or the official Vim website.

 Ubuntu: Use the following command to install:

If the machine doesn't run a GUI, install the non-GUI version with:

Basic Commands:

 :w - Save changes
 :wq - Save changes and exit
 :q - Exit (use :q! to force quit)
 h, j, k, l - Move the cursor (left, down, up, right)

Vim is powerful but has a steep learning curve, requiring memorization of many shortcuts
and frequent mode switching between command and edit modes. However, learning basic
commands is useful for editing documents in gateway environments during embedded
development.

Visual Studio Code (VSCode)

VSCode is a cross-platform source code editor developed by Microsoft, announced at the
2015 Build developer conference. It runs on Windows, macOS, and Linux and is designed
for modern web and cloud applications. VSCode supports JavaScript, TypeScript, Node.js,
and many other languages and runtimes through an extensive extension ecosystem.

Installation:

 Windows: VSCode can be installed via Tencent Computer Manager, 360 Software
Market, or downloaded from the official website.

VSCode is an excellent coding tool, but it has a significant drawback of high resource
consumption. For programmers who do not wish to memorize shortcuts and have ample
computer resources, VSCode is very convenient.

Emacs

Emacs, another powerful text editor and IDE, is highly regarded among professional
programmers. It was initially developed by Richard Stallman in 1975 at MIT and has
evolved into numerous branches, with GNU Emacs and XEmacs being the most
widespread.

Features:

 Emacs Lisp, a highly extensible programming language.
 Full-featured environment, often considered an integrated development

environment (IDE).
 Built-in features include email, FTP editing, remote login, calendar management,

task management, and more.

Installation:

 Windows/Linux: Download from GNU's official website or install from software
markets.

Although Emacs requires memorizing a large number of shortcuts, it doesn't differentiate
between command and edit modes like Vim. For those willing to invest time, Emacs offers a
highly efficient and comprehensive coding environment.

QtCreator

QtCreator is a cross-platform integrated development environment (IDE) designed to make
development with the Qt application framework faster and easier. It integrates with Clang to
check syntax during editing and supports CMake project management, making it
convenient for non-Qt development as well.

Installation:

 Download QtCreator from Tsinghua University's mirror.
 For Windows users who prefer gcc, set up a gcc development environment with

msys2, downloadable from msys2.org.

Compared to VSCode, QtCreator uses less memory and offers better project management.
It is also lighter and has better cross-platform capabilities than Visual Studio. If you prefer
using an IDE for development and project management, QtCreator is highly recommended.

Summary

While Vim, Notepad++, Emacs, and VSCode can manage projects, they lack the
convenience of an IDE. For those accustomed to using an IDE, QtCreator or Codelite are
excellent alternatives. ISG Gateways come with Vim installed, so it's beneficial to become
familiar with using Vim for editing.

4.3 Engineering Management Tools

This section focuses on the tools and methods for engineering management in software
development. Engineering management can be conducted using IDEs or more traditional
methods, such as managing with makefiles. However, in the development of gateway
embedded programs, traditional methods are more recommended. Considering factors
such as the compilation environment and code reuse, it is advisable to use tools like CMake
and Autoconf to facilitate code reuse and cross-platform compatibility.

While managing projects with an IDE can meet the requirements of embedded
development, IDE project files are often not easily transferable. Therefore, the choice of
management method should be based on personal preference or specific circumstances.
Here, we use QtCreator as an example for IDE-based project management.

4.3.1 IDE Project Management

QtCreator is used as an example of IDE project management because it is smaller in size
compared to Visual Studio and easier to configure. Developers working on Linux often find
it more convenient. It is recommended to use CMake whenever possible, though qmake
can also be used. However, if qmake is chosen, it can only be used within the Qt build
environment.

4.3.2 Makefile Management of Projects

Using Makefile is a traditional method for managing projects in Linux. It allows for the
management of the toolchain, header files, directory information, source files, and output
methods required for the compilation process. Makefile enables flexible control over
preprocessing, compiling, and linking processes through the use of variables and scripts.

4.3.2.1 Makefile Structure

 Variables: Define strings, similar to macros in C, that expand to their referenced
locations upon execution.

 Explicit Rules: Specify how to generate target files, including dependencies and
commands.

 Implicit Rules: Leverage make's automatic derivation capabilities for simplified
Makefile writing.

 File Directives: Include other Makefiles, similar to C's #include.
 Comments: Use # for comments, akin to C/C++'s //.

4.3.2.2 Variable Definitions

 Predefined Variables: Useful shortcuts like $@ (target name), $^ (all
dependencies), etc.

 Custom Variables: Defined using =, :=, ?=, += for different assignment behaviors.

4.3.2.3 Targets and Dependencies

Defines how targets depend on each other, specifying commands to be executed.

4.3.2.4 Phony Targets

Used for labels that are not actual files, marked with .PHONY to avoid conflicts with files of
the same name.

4.3.2.5 Functions

 String Functions: Manipulate strings, e.g., $(subst from,to,text).
 Filename Functions: Handle file paths and names, e.g., $(basename names…).

4.3.2.6 Shell Commands in Makefile

Shell commands can be executed within Makefile using $(shell command).

4.3.2.7 Conditional Statements

Makefile supports basic conditionals using ifeq, else, and endif.

4.3.2.8 Handling Multi-level Directories

Makefile can manage projects with source code spread across multiple directories by
including Makefiles from subdirectories.

4.3.3 Basic Process of Using CMake

 The process of using CMake to generate a Makefile and compile a project is as follows:

1. Write the CMake Configuration File: Create a CMakeLists.txt file to define the
build configuration.

2. Generate the Makefile: Run the command cmake PATH or ccmake PATH to
generate the Makefile, where PATH is the directory containing CMakeLists.txt. The

difference between ccmake and cmake is that ccmake provides an interactive
interface.

3. Compile the Project: Use the make command to compile the project using the
generated Makefile.

4.3.3.1 Structure of CMakeLists.txt

The CMakeLists.txt file is composed of commands, comments, and whitespace.
Commands are case-insensitive, and comments are initiated with the # symbol. Commands
typically consist of a command name, parentheses, and parameters separated by spaces.

For example:

 Comments: Start with # and are limited to a single line.
 CMake Commands: e.g., cmake_minimum_required(VERSION 3.9) specifies the

minimum required CMake version.

4.3.3.2 Version Control in CMake

You can control the minimum required version of CMake for a project using the
cmake_minimum_required command. If the CMake version running is lower than the
specified version, processing stops with an error.

 VERSION: Specifies the required version number.
 min: Specifies the minimum required CMake version.
 max: (For versions before 3.12) Specifies the maximum version. For CMake 3.12

and later, this is ignored.

4.3.3.3 Project Name with project

Define the project name with the project command. When you specify a project name,
CMake assigns the following variables:

 PROJECT_NAME: The name of the current project.
 PROJECT_SOURCE_DIR: The source directory of the project.
 PROJECT_BINARY_DIR: The binary directory of the project.

4.3.3.4 Building Executable and Library Targets

CMake can build executable files, shared libraries, and static libraries:

 Executable Files: Use add_executable to specify the name of the executable file.
 Static Libraries: Use STATIC with add_library.
 Shared Libraries: Use SHARED with add_library.

Variables in CMake can be defined and accessed as follows:

 Defining Variables: Use the set command.
 Accessing Variables: Use ${<variable>} syntax.

CMake also provides various internal and environment variables for customization,
including CMAKE_C_COMPILER, CMAKE_CXX_COMPILER, CMAKE_C_FLAGS, and
CMAKE_CXX_FLAGS.

4.3.3.5 Example of CMake Configuration

Below is a simplified example of a CMake configuration file for a project named
rockTerminal:

project(rockTerminal)

cmake_minimum_required(VERSION 3.9)

set(CMAKE_VERBOSE_MAKEFILE ON)

set(CMAKE_MODULE_PATH ${CMAKE_SOURCE_DIR}/cmake)

if(("${CMAKE_CXX_COMPILER_ID}" STREQUAL "GNU") OR
("${CMAKE_CXX_COMPILER_ID}" STREQUAL "Clang"))

 set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -Werror -Wno-error=deprecated-
declarations")

 set(CMAKE_CXX_FLAGS "${CMAKE_C_FLAGS} -Werror -Wno-error=deprecated-
declarations")

endif()

add_subdirectory(src)

This configuration sets up the project, specifies the minimum required version of CMake,
and includes necessary build flags and subdirectories.

4.3.3.6 Multi-Level Directory Support

CMake supports multi-level directory compilation. Each directory should contain a
CMakeLists.txt file, and subdirectories can be added using the add_subdirectory command.

4.3.3.7 To generate a Makefile

Once the entire project is written, you can create a new folder named build within the
project directory. Then, execute cmake to convert the CMakeLists.txt file into a Makefile
that can be used with the make command. cmake can also generate other types of project
files, depending on the specified generator using the -G parameter, which may vary slightly
depending on the platform. Currently, cmake supports generating the following types of
project files:

 Visual Studio 17 2022
 Visual Studio 16 2019
 Visual Studio 15 2017
 Visual Studio 14 2015
 Visual Studio 12 2013
 Visual Studio 11 2012
 Visual Studio 9 2008
 Borland Makefiles
 NMake Makefiles
 NMake Makefiles JOM
 MSYS Makefiles
 MinGW Makefiles
 Green Hills MULTI
 Unix Makefiles

o Ninja

 Ninja Multi-Config
 Watcom WMake
 CodeBlocks - MinGW Makefiles
 CodeBlocks - NMake Makefiles
 CodeBlocks - NMake Makefiles JOM
 CodeBlocks - Ninja
 CodeBlocks - Unix Makefiles
 CodeLite - MinGW Makefiles
 CodeLite - NMake Makefiles
 CodeLite - Ninja
 CodeLite - Unix Makefiles
 Eclipse CDT4 - NMake Makefiles

 Eclipse CDT4 - MinGW Makefiles
 Eclipse CDT4 - Ninja
 Eclipse CDT4 - Unix Makefiles
 Kate - MinGW Makefiles
 Kate - NMake Makefiles
 Kate - Ninja
 Kate - Unix Makefiles
 Sublime Text 2 - MinGW Makefiles
 Sublime Text 2 - NMake Makefiles
 Sublime Text 2 - Ninja
 Sublime Text 2 - Unix Makefiles

The basic command to generate project files for Visual Studio 2019 is as follows:

4.3.4 Managing Projects with autoconf

autoconf can be used in msys2, cygwin, and *nix development environments. Compared to
cmake, autoconf has slightly less cross-platform capability but still offers powerful project
management features. It is recommended to use cmake and Makefile for project
management. However, since some open-source resources use autoconf to manage their
projects, it's important to understand how to perform cross-compilation.

 If the project provides configure, you can automatically configure and cross-compile
the project by executing the following commands:

The --host parameter in the command specifies the prefix for the cross-compilation
tools. In this example, the parameter is set for a 32-bit compiler prefix. The --prefix
parameter specifies the installation directory after compilation.

The configure command checks and configures the project's compilation
environment. make all executes the compilation process, which sometimes includes
generating documentation and other tasks. Finally, make install performs the
installation.

 If the project provides autogen.sh, some projects include a script like autogen.sh
that converts configure.ac to configure. The compilation process for projects with
this script is as follows:

 If the project provides configure.ac, in this case, you need to manually convert
configure.ac to configure as follows:

4.4 Compilation Tools

We provide a GCC 4 toolchain that supports C++14 syntax. This toolchain requires a 64-bit
Linux operating system. The toolchain is provided as a compressed package, including
both 32-bit and 64-bit versions.

Before using the toolchain, you need to copy the software package to a Linux system and
then extract it using the tar command. After extraction, add the environment variables
accordingly.

To verify that the 32-bit compilation is working correctly, run:

If the output matches the expected screenshot, the 32-bit compilation is functioning properly.

Then run:

4.4.1 Compilation

The following command compiles a source file into an object file. To include debugging
information, add the -g parameter:

In practical projects, manually compiling files one by one is impractical, so these commands
should be integrated into the project management module.

4.4.2 Linking

 Executable Files: Use gcc to link and generate an executable file. For example:

In this command:

o a1.o and a2.o are the compiled object files.

o -o prog specifies the output executable file.
o -pthread, -lm, -lrt, and -lstdc++ are external libraries.
o -O2 indicates level 2 optimization.
o -s removes unnecessary symbol tables to reduce file size.
o -l specifies library files, usually named libxxx.so or libxxx.a.

To compile with debugging information, add the -g parameter:

 Dynamic Libraries: Add the -shared parameter to create a dynamic library. If you
are working on Windows, you need to adjust your code accordingly.

 Static Libraries: Use ar to create a static library from object files. Static libraries
generally have a .a extension:

4.4.3 Dependency Checking

After development, you may need to check program dependencies to ensure that all
required dynamic libraries are included in the deployment package. Use the ldd command
to check dynamic library dependencies:

ldd will list the external dynamic libraries required by the program or library. Note that ldd is
a script that relies on ld-linux.so for dependency checking. This functionality is platform-
dependent and cannot be used in cross-compilation environments. You need to copy the
program to the target machine and run the command there.

4.4.4 Exporting Symbols

For symbols that need to be exported, add the __attribute__((dllexport)) declaration before
the function or variable:

